

HAOLEI BAI

✉ baih0011@e.ntu.edu.sg | 🌐 deadlykitten4.github.io

Education

Nanyang Technological University, Singapore Master of Science in Signal Processing; GPA: 4.57/5.0	<i>Aug.2023 - Feb.2025</i>
Qingdao University of Technology, Qingdao, China Bachelor of Engineering in Communication Engineering; GPA: 4.49/5.0 (Rank: 3/90)	<i>Sep.2019 - Jun.2023</i>

Publications

ResSVD: Residual Compensated SVD for Large Language Model Compression <i>Haolei Bai, Siyong Jian, Tuo Liang, Yu Yin, Huan Wang</i> [arXiv]	<i>Under Review</i>
---	---------------------

Research Experience

ResSVD: Residual Compensated SVD for Large Language Model Compression ENCODE Lab, Westlake University	<i>Jan.2025 - May.2025</i> <i>Advisor: Huan Wang</i>
• Leveraged residual matrices to compensate for SVD, reducing the overall truncation loss • Proposed partial-layer compression strategy to reduce layer-wise error and mitigate error propagation	
AI Knowledge Engineering for Intelligence Analysis CFAR, Agency for Science, Technology and Research (A*STAR)	<i>May.2024 - Nov.2023</i> <i>Advisor: Ming Yan</i>
• Employed open source LLMs to extract events from unstructured documents • Improved LLMs event extraction accuracy through Chain-of-Thought prompt strategy and multi-turn dialogues • Leveraged these extracted events as a basis for summary generation by AI model and as reasoning evidence for knowledge exploration by human users	

Projects

Data Efficient Training for Egocentric Vision-based Action Recognition Master's thesis, Supervised by prof. Kot Chichung, Alex, NTU	<i>Aug.2023 - Nov.2024</i>
• Efficiently learn features with minimal labeled data using semi-supervised learning techniques • Applied multimodal learning frameworks, incorporating complementary data modalities to enhance model performance • Applied transformer-based architectures to analyze, implemented iterative experimentation and evaluation	
Human Action Recognition in the Dark: Exploration with Late Fusion and Image Enhancement	<i>Nov.2023 - Dec.2023</i>
• Employed late fusion strategy to integrate the features extracted from dark video frames with other relevant features and modalities, maximizing the accuracy of human action recognition in dark conditions • Designed an end-to-end model to complete the whole process, tested and evaluated the performance of the model	
Realization of Kinect Function Based on Face Recognition and Gesture Recognition	<i>Dec.2022 - Jun.2023</i>
• Designed a game system that can be controlled without a remote control but specific gestures • Employed OpenCV for face recognition to verify users' identity preventing unauthorized users from accessing the system and used Mediapipe to implement gesture recognition • Created an interactive game, where users can play the game through specific gestures • Developed and designed a UI interface to realize user interaction	

Develop a UAV system for Detecting Industrial Chimney Flaws Based on Machine Learning

Jul.2021 - Jun.2022

- Built a Quad-rotor UAV control system with a vision system
- Established an image processing model to process the collected chimney flaws' picture

Scholarships & Awards

CFAR Internship Award for Research Excellence (CIARE)	2024
Excellent Student Scholarship	2019 - 2023
National Scholarship for Encouragement	2022
Third Prize, "iCAN" National College Student Innovation and Entrepreneurship Competition	2021
Second Prize, The National College Student Electronic Design Competition	2021
First Prize, 14th China College Students Computer Design Competition of Shandong Province	2021
Second Prize, Shandong Provincial College Student SCM Application and Design Innovation Competition	2021
Third Prize, 11th Provincial College Students Mathematics Competition	2020

Skills & Languages

Skills: Python, Pytorch, Linux and C/C++

Languages: Chinese (Native), English (IELTS 6.5)